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We have applied the approximation method of statistical linearization and 
various higher order corrections thereto to the study of a nonlinear oscillator 
perturbed by Gaussian, delta-correlated noise. We compute the second- 
order statistics of the response, i.e., the variances, autocorrelation functions, 
and spectral densities for various forms of the nonlinearity and compare 
our results with the few more exact calculations which are available in the 
literature. We show that a very simple modification of statistical lineariza- 
tion, based upon the use of the variance as obtained from the appropriate 
Fokker-Planck equation, yields results which are in better agreement 
with the "exac t "  literature results than either statistical linearization 
or first-order corrections thereto. This modified method of statistical 
linearization has the significant advantage of great computational simplicity 
as compared to other attempts of accurate calculations of second-order 
statistics of nonlinear stochastic equations now in the literature. 

KEY W O R D S :  Stochastic processes; nonlinear stochastic equations; 
statistical linearization ; autocorrelation functions ; spectral densities. 

1 .  I N T R O D U C T I O N  

I n  t he  first  p a p e r  o f  th is  series/1l  B u d g o r  p r e s e n t e d  a genera l  e x p o s i t i o n  o f  

t he  m e t h o d  o f  " s t a t i s t i c a l  l i n e a r i z a t i o n "  a n d  its h i g h e r  o r d e r  c o r r e c t i o n  

t e r m s  f o r  t he  a p p r o x i m a t e  s o l u t i o n  o f  n o n l i n e a r  s t ochas t i c  d i f fe ren t ia l  

e q u a t i o n s .  

In  th is  p a p e r ,  we  a p p l y  the  m e t h o d  o f  s ta t i s t ica l  l i n ea r i z a t i o n  to  a s t u d y  

o f  the  " s t o c h a s t i c "  Duf f ing  osc i l la tor ,  i.e., an  a n h a r m o n i c  d a m p e d  osc i l l a to r  
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subject to random excitations. The Duffing oscillator plays the analogous 
role in the study of nonlinear systems as the harmonic oscillator does for 
linear ones--it  is one of the simplest systems which can be treated in sufficient 
detail to investigate the usefulness of approximation methods. For this 
reason, the Duffing oscillator has already been discussed in detail by 
Caughey (2) and Crandall5 3~ Our reasons, and excuse, for presenting here one 
more study of this system are fourfold: (1) to introduce this useful method to 
the chemical and statistical physics fraternity, (2) to compare the statistical 
linearization results including higher correction terms with recent results on 
the Duffing oscillator obtained by an entirely different method by Morton 
and Corrsin (4) (MC) and Bixon and Zwanzig, (s~ (3) to present some new 
results on a simple but useful correction to statistical linearization for the 
Duffing oscillator, and (4) to extend some of these results to higher non- 
linearities. Items 2-4 are not covered by the previously cited work. 

In Section 2 we show how to apply the method of statistical linearization 
to the Duffing oscillator. In Section 3 we develop higher order corrections to 
statistical linearization to obtain explicit expressions for the variance, the 
autocorrelation function, and the spectral density for the position variable 
x(t) as a function of the damping parameter and the form of the nonlinearity. 
In Section 4 we present via tables and graphs computer calculations of these 
functions based on the analytical expressions of Sections 2 and 3 and compare 
these results with the calculations of Morton and Corrsin. We also develop 
in this section a new, simple, and useful correction to statistical linearization 
which considerably improves the agreement with the Morton-Corrsin cal- 
culations. In Section 5 we briefly summarize and discuss our results. 

2. S T A T I S T I C A L  L I N E A R I Z A T I O N  

The method of statistical linearization is based on the replacement of 
nonlinear stochastic equations which cannot be solved analytically by 
"equivalent"  linear equations. These linear equations are chosen so as to 
minimize, in some average statistical sense, the error made by this 
replacement. 

A general discussion of the method of statistical linearization and 
systematic higher order corrections thereto is given in a companion paper, (~ 
hereafter referred to as I. In this paper we apply these techniques to a 
generalized Duffing oscillator, i.e., an anharmonic oscillator with a general 
nonlinear force f(x) driven by external noise, 

2 + c~2 + [x + /~f(x)] = F(t) (1) 

Here x(t) is the position of the oscillator at time t , .  is a damping coefficient, 
and the natural (linear) frequency of the oscillator is taken to be unity. The 
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functionf(x) is some nonlinear function of x with "strength"/3. The driving 
force or excitation F( t )  is stationary noise, which we assume to be a Gaussian 
delta-correlated force with zero mean, i.e., 

( F ( t ) )  = 0 (2) 

( F ( t ) F ( t ' ) )  = 2d 3(t - t') (3) 

The presence of the nonlinear functionf(x) prevents an analytic solution 
of the problem. To approximate the properties of Eq. (1) by the method of 
statistical linearization, it is convenient to rewrite it as 

57 + aye + y2x = F( t )  - k(x) (4) 

where the "e r ro r"  term A(x) is given by 

A(x) = flU(x) - hzx (5) 

with 

hi - y~ - 1 (6) 

The coefficient y~, which represents the square of an "equivalent frequency," 
is determined by minimizing the expectation of the square of the error term 
with respect to this parameter, i.e., y2 is determined from the equation 

(O/~hl)(~2(x)) = 0 (7) 

where the brackets ( ) denote an ensemble average with respect to the 
equilibrium distribution of the random variable x. Justification for this 
minimization procedure is given in I. Substitution of Eq. (5) into Eq. (7) yields 

hi = /3 (x f ( x ) ) /<x  2) (8) 

so that 

y= = 1 + [[3(xf(x))/(x=)] (9) 

Statistical linearization consists in dropping the term A(x) from Eq. (4), 
thus approximating the nonlinear process by a linear one with the equivalent 
effective frequency defined by Eqs. (6) and (8), i.e., 

X + aJc + y2x = F( t )  (10) 

The ensemble averages indicated in Eqs. (8) and (9) are calculated using the 
equilibrium solution of the linear equation (10). Noting that F(t )  is Gaussian 
8-correlated noise, it follows that the stationary distribution of x is also 
Gaussian, 

P(x )  = [1/(2~r)*/2ax] exp(-x2/2ax 2) (11) 

with 

< x 2 >  = ~x  2 = d/ ,~r  ~ ( 1 2 )  
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We restrict our analysis to nonlinear functions f ( x )  which are odd in x [to 
assure that the solution x(t)  is finite for all t and positive/3] and which can be 
expanded in a.power series 

f ( x )  = ~ f i x  2j+1 (13) 
J = l  

Equation (9) then becomes, with the application of Eqs. (11)-(13), 

d/czcr. ~ = 1 + ~ ~ fj.cje~ j (14) 
i = l  

where the coefficients cj are given by 

cj = x 2j + 2 exp(-  x2/2) dx (15) 
o~ 

Equation (14) must now be solved, in general numerically, for the variance 
ax 2. This solution then yields the "equivalent" frequency y via Eq. (12). 
When this equivalent frequency is substituted in Eq. (10) one can then 
calculate, within the statistical linearization approximation, various statistical 
properties of the nonlinear oscillator equation (1). 

In particular, the autocorrelation function R~,( t )  and spectral density 
S~~ of the random variable x as calculated from Eq. (10) are 

= - -  e -C~'=~ltl cos ~[t t + ~ sin ~bltl (16) RCx~ =-- ( x ( r  + t )x(r) )  ar = 

with 

and 

~b = (r 2 - ~2/4)1'2 (17) 

S~(oJ) - ~ # ~ ' R ~ ( t )  dt = (y2 _ ~o22) d + ~o=~U (18) 

The superscript zero is used to denote the statistical linearization 
approximation (10). Equation (18) was also derived by MC (~> by diagram- 
matic expansion and denoted by them as the "first Kraichnan-Wyld" 
approximation. 

3. C O R R E C T I O N S  TO S T A T I S T I C A L  L I N E A R I Z A T I O N  

The method of statistical linearization takes into account the nonlinear 
error term A(x) of Eq. (4) only in the calculation of the effective frequency. 
This error term is otherwise ignored. In paper I two procedures are developed 
which yield higher order corrections to the autocorrelation function obtained 
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by statistical linearization. Both of these procedures are based on retaining 
the error term A(x) in Eq. (4) and approximating the contributions of this 
nonlinear term to the autocorrelation function of x(t). These higher order 
corrections were first obtained by MC C4~ via diagrammatic expansion tech- 
niques and termed by them "cumulant discard" and "quasilinear Green's 
function" approximations. 

In the cumulant discard method, the Fourier transform of Eq. (1) is 
multiplied by its complex conjugate to yield the following spectral density 
equation: 

I-co 2 + i~zoJ + 112S.~(o)) +/32Sr~(co) + /3 [ ( -w  2 + i~co + 1)S~r(~o) 

+ ( -oJ  2 + icw~ + 1)*Sfx(~O)] = 2d (19) 

Here Sr,~(o~) is the Fourier transform of the autocorrelation function 

Rf~(t) =- ( f [x ( r  + t)]x(r)) (20) 

and the other spectral densities occurring in Eq. (19) are defined analogously 
in terms of their autocorrelation functions. The unknown higher order 
correlation functions Rrx(t), R~r(t ), and Rr1(t ) arising from Eq. (4) which 
contribute to Eq. (19) are assumed to be decomposable as joint Gaussian 
processes, This "quasinormal" assumption is the approximation which leads 
to the cumulant discard method. In I it is shown that this implies the following 
relations: 

Rxj(t) = R~x(t) = (a~/crx)Rx,~(t) (21) 

= ~ (a./Crx )R~( t )  (22) R i i ( t )  ~ 2 .  . 

Here 

~x  2 - R x x ( o )  ( 2 3 )  

is the variance, and the coefficients a~ depend on the nonlinearity f (x)  and 
are given by 

a. = f ( x ) e ( x ) H e . ( x )  dx (24) 

The Hen(x) are Hermite polynomials (6~ and P(x) is the stationary Gaussian 
distribution (11). It should be noted that a~ = exh~, where h~ is the coefficient 
of statistical linearization as given in Eq. (8). Fourier transformation of 
Eqs. (21) and (22) and substitution into Eq. (19) yields upon inverse trans- 
formation a nonlinear integral equation for the correlation function Rxx(t): 

Rxx(t) = R(~~ - /32 ~ a~2 (~o ~= z ~ ~-co dt' R(~(t - t')R~,:(t') (25) 
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The first term on the right-hand side of Eq. (25) is the result of statistical 
linearization as given by Eq. (16). The other terms are the correction to that 
result. 

The quasilinear Green's function method begins by treating Eq. (4) as a 
linear inhomogeneous equation. Thus the solution G(t - t ')  of 

+ s 0  + ~,2G = 8 0  - t') (26) 

is used as a Green's function to obtain 

~0 ~176 x(r)  = G(t ' )[F(r - t ') - A(x(z  -- t'))] dt'  (27) 

Multiplying this expression for x(~-) by a similar one for x(~- + t) and averag- 
ing to form the autocorrelation function Rxx(t)  yields an expression which 
contains, on the right-hand side, the higher order correlation functions 
R~v, RFA, and RaA. Once again these higher order correlation functions are 
approximated using a quasinormal assumption: 

R~(t) = R ~ ( t )  = 0 (28) 

R ~ ( t )  = ~(hl~rx)Zax z Rxx(t)  _ 2hitler x __ax 2al Rxx(t)  + ~2 n~=~= --~ax a~2 R~x(t) (29) 

All the symbols on the right-hand side of Eq. (29) have been defined earlier. 
The final result of this procedure is then again a nonlinear integral equation 
for Rx~(t): 

Rx~(t) R ~ ( t )  + t2 ~ a, 2 (| at '  ,o, , , = R,,x(t - t )Rxx(t ' )  (30) 2n, 
n=2 ~X J--oo 

It should be noted that, as pointed out in I, Eq. (30) differs from Eq. (25) only 
in the sign of the higher order correction terms. 

It is not known in general which of these two methods for obtaining the 
correction terms yields the better approximation for Rx~(t). Morton and 
Corrsin's calculations for the Duffing oscillator indicate that, at least for that 
particular example, the quasilinear Green's function result, Eq. (30), was in 
better agreement with their exact computer calculations. In the numerical 
calculation presented below, we present our results for both cases, i.e., for 
Eqs. (25) and (30). 

In the next section we also carry out explicit calculations and compari- 
sons of the methods discussed here for the more general nonlinear function 

f ( x )  = f i x  3 + f~x 5 + f s x  7 (31) 
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For this case the coefficients a, are explicitly given by 

aa2/a~ 6 = 3! (f l  + 10f2crx 2 + 105f3Crx') 2 

a52/~I  ~ = 5t (_/2 + 21fs,~x~) ~ 

a72/O-lx4 = 7 ! A  2 

with a, = 0 for n /> 4. 

(32) 

(33) 

(34) 

4. R E S U L T S  

We present here the results of our calculations of the variances, auto- 
correlation functions, and spectral densities for the generalized Duffing 
oscillator (1). To evaluate the accuracy of our calculations, we obviously need 
to compare them to some exact calculations. Such exact calculations for 
nonlinear stochastic systems of the type considered here, i.e., Eq. (1), are 
available only for the spectral density Sxx(o0 of the Duffing oscillator through 
the analog computer "experiments" of MC. (4~ The most accurate analytic 
results, i.e., the ones most closely in agreement with the analog computer 
work, were obtained by MC via a very tedious diagrammatic expansion 
method termed by them the "second Kraichnan-Wyld" approximation. We 
compare our results with this second Kraichnan-Wyld approximation, to 
which reference is frequently made in this paper as "exact" results. Bixon 
and Zwanzig (5~ also use the MC calculation as the basis of comparison for 
their results. 

The only quantity which can easily be calculated exactly for the nonlinear 
stochastic equation (1) is the variance ~2. This is a particularly useful 
quantity with which to compare our approximate results since the method of 
statistical linearization and corrections thereto are designed to minimize the 
error in the variance. To calculate the exact variance, we use the Fokker- 
Planck equation for the probability density P(x, 2, t), ~5~ 

_~2p 
0est x-b-x" oP + ~ {[c~2 + x + {3f(x)le} + d-~xx2 (35) 

The equilibrium solution of this equation is 

exp(-  e~22/2d) exp{- (c~/d) fo x [x' +/3f(x')] dx'} 
P(x, 2, oo) = f~| d2 f~_| dx exp(-~22/2d)exp{-(a/d)fo x [x' +/3f(x')] dx'} 

from which the exact variance, 

cO cO 

can readily be obtained. 

(36) 

dx x2P(x, 2, oo) .(37) 



382 

/3 ex2(-FP) 

A. B. Budgor, K. Lindenberg, and K. E. Shuler 

Table I. Comparisons for e x  2 

70 Error % Error % Error 
~x~(SL0) ~.~(SL1) ~x~(SL2) o~(SL0) ~x2(SL1) ~x~(SL2) 

f ( x )  = x a ,a  = 2 
1 0.17256 0.16667 0.17140 - -  --3.4 -0.67 - -  
2 0.14480 0.13715 0.14460 0 .13158 --5.3 -0.14 -9.1 
3 0.12836 0.12013 0.12898 0.11370 -6 .4  +0.48 - 11.4 
5 0.10843 0.10000 0.11075 0.09300 -7.8 +2.1 - 14.2 

10 0.084034 0.076129 - -  - -  -9 .4  - -  - -  

f ( x )  = x 5 ,a  = 2 
0.1 0.23416 0.23141 0.23292 0.23008 -- 1.2 --0.53 -- 1.7 
0.25 0.22046 0.21350 0.21877 0.20942 --3.1 --0.77 --5.0 
0.5 0.20609 0.19456 0.20638 - -  --5.5 +0.14 - -  
1.0 0.18870 0.17272 0.19833 - -  -8 .5  +5.1 - -  
3.0 0.15730 0.13623 - -  - -  - 13.4 - -  - -  

f ( x )  = (1/3)x 3 + (2/15)x 5 + (17/315)x r, a = 2 
1 0.19932 0.19159 0.19844 - -  -3 .9 -0.44 - -  
2 0.17722 0.16690 0.17842 - -  -5 .8 +0.68 - -  
3 0.16279 0.15143 0.16593 - -  -7 .0  +1,9 - -  

In  Table I we present results for the variance ax 2 with damping  coefficient 

a = 2 and ampli tude d = 1/2 for various nonlineari t ies  f ( x )  and several 

values of the nonl inear i ty  coefficient ft. The exact variance, obtained from 

Eq. (37), is denoted by ax2(FP). The variance obtained by statistical lineariza- 

t ion is denoted by ax2(SL0) and the variances obtained by the quasil inear 

Green 's  funct ion and cumulan t  discard methods are denoted by crff(SL1) 
and a,~2(SL2) respectively. The percent errors of each method with respect to 

the exact FP result are also shown. The nonlineari t ies  considered are the 

Duffing oscillator [f(x) = xa], a fifth-order nonl inear i ty  If(x) = xS], and 
the first three terms of the expansion of tan  x in a power series. The following 
conclusions, which we also found to be true for other values of ~, can readily 

be extracted from Table I:  
1. Statistical l inearizat ion (SL0) gives a variance which is lower in 

every case than  the exact one. The percentage error increases, for all forms of 

the nonl inear i ty  f ( x ) ,  with the strength parameter  fl and depends upon  the 
form of f ( x ) .  For  small fl, where the designation " s m a l l "  depends on the 

form of the nonl inear i ty  f (x) ,  the error is of  the order of a few percent. 
2. The quasil inear Green 's  funct ion method (SL1) generally reduces the 

error by a considerable amount ,  in most  cases by an  order of magnitude,  
br inging the variance to within tenths of percent of the exact one. 

3. The cumulan t  discard method invariably gives worse results for the 
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variance than does statistical linearization for all the cases that we have 
calculated. 

It is important to stress the fact that statistical linearization is a procedure 
which is trivial to carry out in comparison with the work involved in com- 
puting the correction terms. Equations (25) and (30) are nontrivial integral 
equations for numerical solution and can present difficult computational 
stability problems for larger nonlinearities. This is evidenced by the dashes in 
Table I, which represent parameter values and nonlinearities for which we 
were not able to solve the integral equations via standard iterative techniques. 
Hence if one is content with accuracy to within a few percent for the variance, 
our results indicate that statistical linearization is quite sufficient, and the 
calculation of  the correction terms in SL1 will not be worthwhile unless very 
high accuracy is desired. As we will see below, this conclusion is also valid 
when we consider autocorrelation functions and spectral densities. 

We next present typical results for autocorrelation functions and spectral 
densities for various nonlinearities. Figures 1 and 2 show respectively the 
autocorrelation function Rxx(t) and its Fourier transform Sxx(co) for the 
Duffing oscillator with f ( x ) =  x a. The parameter values ~ = 2 for the 
damping coefficient and/3 = 2 for the nonlinearity strength lead to an equiva- 
lent linear oscillator which is overdamped. Hence, Rxx(t) exhibits no oscilla- 
tions and Sxx(co) peaks at oJ = 0. The middle curve on both graphs is the 
statistical linearization result (SL0); the upper curve corresponds to the 
quasilinear Green's function method (SL1) and the lower curve to the 
cumulant discard method (SL2). The main differences in the three methods 
occur near t = 0 for R~x(t) and near co = 0 for Sxx(co). From Table I we 
already know that the upper curve in R,:,(t), i.e., the quasilinear Green's 

0.14 

0.12 

0.10 

0,08 

~: 0.06 

0.04 i 

0.02 

0.00 ~ ~ I 
0.0 2.0 4.0 6.0 

I i [ I 

a : 2  
B:2 

I I i I 
8.0 I0.0 12.0 14.0 

Fig. 1. The autocorrelation function R ~ x ( t )  for an overdamped Duffing oscillator 
f ( x )  = x 3 with a = 2 and fl = 2. The central curve (SL0) is calculated from Eq. (16), 
the upper curve (SL1) from Eq. (30), and the lower curve (SL2) from Eq. (25). 



384 A.B.  Budgor, K. Lindenberg, and K. E. Shuler 

~< 
x ~o 

0.50 

0.25 

0.20 

0.15 

0.[0 

0.05 

0-000. 0 

L I I I I I I I I 

( ] =2  
B=z 

2.5 5.0 
] I [ I I I I 

7.5 10.0 12.5 15.0 IZ5 20.0 22.5 

(d 

Fig. 2. The spectral density S~x(o~) corresponding to the autocorrelation function curves 
Rxx(t) of Fig. 1. 

function result, gives the best value of R~x(0) = crx 2. From comparison with 
exact results for S~x(OJ) by Morton and Corrsin (~) for slightly different param- 
eter values c~ and/3, we learn that the upper curve (SL1) is the most accurate 
spectral density curve, while the lower curve (SL2) is the least accurate one. 
Once again we conclude that the amount of work involved in obtaining the 
relatively small improvement due to the quasilinear Green's function method 
is, in most cases, not warranted and that the much simpler method of 
statistical linearization gives results that are already correct to within a few 
percent. 

0 . 8  I I i l i I I 

(z =0.5 

0.6 ,~= 0.1 

Z 04 

0.2 

0.0 

-0.2. 

-0.4 
0.0 2.0 4.0 6.0 B.0 10.0 12.0 14.0 

! 

Fig. 3. The autocorrelation function Rx~(t) for an underdamped Duffing oscillator 
f(x) = x 3 with ~ = 0.5 and/3 = 0.1. The central curve (SL0) is calculated from Eq. (16), 
the upper curve (SL1) from Eq. (30), and the lower curve (SL2) from Eq. (25). 



Studies in Nonlinear Stochastic Processes. II 385 

In Fig. 3 we again present the autocorrelation function Rxx(t)  for the 
Duffing oscillator I f(x)  = xa], but this time with parameters c~ and/3 that 
lead to an underdamped equivalent linear oscillator. The autocorrelation 
function therefore oscillates. Again, the middle curve is the result of  statistical 
linearization and the upper and lower curves are results of  the quasilinear 
Green's  function (SL1) and cumulant discard (SL2), methods respectively. 
The differences between the three curves are very small, the largest difference 
occurring at t = 0 and at the first minimum. 

It  is interesting to note that, in spite of  the fact that the SL1 and SL2 
curves are solutions of  the nonlinear equations (25) and (30), they do not 
contain higher harmonics of  the fundamental frequency of the equivalent 
linear oscillator as might have been expected. These higher harmonics are, 
in fact, damped out. To emphasize this point, we show in Fig. 4 the differences 
AR (a~ R ~  1> R(~ sL~ and A m b ~ =  R(sL2~ R(x sL~ The solid curve a 
represents the difference between the autocorrelation functions SL1 and SL0 
for parameter  values c~ = 0.5 and fi = 0.1, and the solid curve b represents 
the difference between SL2 and SL0 for the same parameter values. We note 
that these differences AR~x are, for all values of  t, very small, i.e., A R ~ / R ~  = 
O(10 - 2). We further note that the frequency of oscillations of  these differences 
A R ~  is essentially identical to that of  R ~ ( t )  in Fig. 3. 

These two observations are consistent with the nonappearance of the 
higher harmonics in R(S~ ~ and R~ sL2). The dashed curves a and b again 
represent differences A R ~  for the Duffing oscillator, but now for the over- 
damped case (a = 2, fi = 1). As expected, no oscillations are observed for 
this overdamped case. 

The results presented in Figs. 1-4 and the preceding comments, as well as 

0.02 

o.o, I-, 

o.oo "f ~ 
2s / 

-0.01 I~ 
-0.02 ~// 

0.0 

/0 I 

f 
I I I I I [ I 

20 4.0 6.0 8.0 10.0 12.0 14.0 

t 

Fig. 4. The differences ----x~hR(~ _~ R~SxL1) -- R (sL~ (curve a) and ----xxAR(b~ -- R(SL2~x -- R (s~'~ 
(curve b) vs, t. The solid lines are for the parameter values ~ = 0.5, fl = 0.1 and the 
dashed lines for ~ = 2,/3 = 2. 
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our results for other nonlinearities and parameter values not presented here, 
suggest that there exists a "pseudoscaling" such that 

and 

R~2~)(t) ~_ (1 + A)R(~SL~ (38) 

R~Sr~2)(t) ~- (1 - A ) R ~ ~  (39) 

with analogous relations for the spectral densities Sx~(oJ). In Eqs. (38) and (39) 
A is a very slowly varying function of time, almost constant, with A << 1 for 
the cases we have considered. Its value can be very roughly estimated from 
Eq. (25) or Eq. (30) by noting that [R~x(t') /~,  I << 1 for most values of t' 
and has its largest value (i.e., unity) at t' = 0. Using the mean value theorem 
by taking R~ out from under the integral yields 

- ~ 2 . r  d r  R L ( t ' )  (40) 

This is a simple approximation to the change in R~~ brought about by 
the correction terms in the quasilinear Green's function and cumulant discard 
methods. 

We have also considered the behavior of the autocorrelation function 
and spectral density for different types of nonlinearities f (x) .  Figures 5 and 6 
show typical results, with a = 2 and fi = 1. These curves are all calculated 
by the quasilinear Green's function method (SL1). Curve c in both figures 
corresponds to the Duffing oscillator, f ( x )  = x s. Curve b is for a fifth-order 
nonlinearity, f (x )  = x 5. Curve a corresponds to the first three terms in the 
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F i g .  5. The autocorre lat ion funct ion  R~SL1)(t) for various  nonlinearit ies  f(x) with ~ = 2 

and /~ = 1. Curve a: f ( x )  = x3/3 + 2x5/15 + 1 7 x 7 / 3 1 5  "~ t a n x ;  curve b: f ( x )  = xS; 
curve e: f ( x )  = x 3. 
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Fig. 6. The spectral densities S~=(oJ) corresponding to the autocorrelation functions 
R~=(t) of Fig. 5. 

power series expansion of tan x, i.e., f ( x )  = x3/3 + 2x5/15 + 17x7/315. It 
should be noted that the changes in Rxx(t)  and Sxx(OJ) are not very dramatic. 

A logical question that may come to mind at this point is the following: 
How big an error does one make in the calculation of the autocorrelation 
function and spectral density if one ignores the nonlinearity altogether, i.e., 
by setting fl = 0 ? Is this error larger than the difference between statistical 
linearization and exact results, or between statistical linearization and quasi- 
linear Green's function results ? The answer is that one certainly does much 
worse when ignoring the nonlinearity altogether. For instance, consider the 
variances a 2  listed in Table I. The exact variance for a linear oscillator 
(/3 = 0) with damping coefficient ~ = 2 is easily seen from Eq. (37) to be a 2  = 
0.25. Now consider, for example, the case/3 = 2 for the Duffing oscillator. 
From Table I we see that the exact variance, i.e., (rx2(FP), is 0.1448, i.e., down 
from the t3 = 0 variance by 42%. Statistical linearization gives a result which 
differs from the exact result by only 5.3% and the difference between SL0 
and SL1 is only 5.2%. The question then remains: Is most of the effect of  the 
nonlinearity contained in the variance ? In other words, is the normalized 
correlation function, Rx=(t)/a= 2, fairly accurately calculated if one simply 
ignores the nonlinearity? The answer is no, as illustrated in Fig. 7. This 
figure shows Rxx(t)/cr~ 2 with c+ = 2 for the linear oscillator (/3 = 0) and the 
statistical linearization results with/3 = 0.5 and/3 = 2 for the Duffing oscil- 
lator. It is clear from an examination of these curves that also for the normal- 
ized autocorrelation function the effect of the nonlinearity is significant and 
cannot be ignored. Figure 8 shows a similar comparison for the normalized 
spectral density. 

We have found a very simple method which greatly improves the results 
given by statistical linearization. The implementation of this method is trivial 
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compared  to the work  that  must  be done to obtain the correction terms o f  
the quasilinear Green 's  function method and, in addition, yields more  
accurate results than the latter. I t  consists simply in using the statistical 
linearization results, Eqs. (16) and (18), but  with the variance obtained f rom 
the exact Fokker -P lanck  equation, Eq. (37) in place o f  the variance obtained 
by statistical linearization, Eqs. (5)-(8). This procedure yields an effective 
frequency 7 given by 

~,2 = d/~crxa(Fp) (41) 

in place o f  Eq. (12). This method therefore automatically gives the exact 
variance and hence corrects R x x ( t )  in the region where the approximate  
results differ most  f rom the exact ones, i.e., near t = 0. A more stringent test 
o f  this procedure  is to analyze the spectral densities obtained by its use. 
Table I I  shows the results o f  such a calculation. These results are for  the 

Table II. Calculated Values of Sxx(oJ) 

Statistical Quasilinear Statistical 
MC KWII linearization Green's linearization with 

"exact" (SL0) function (SL1) ox2(FP) 

f ( x )  = X 3, ~ = 2, fl = 1 
0.0 0.48863 0.44444 0.45501 0.47646 
0.5 0.40282 0.39024 0.40080 0.41035 
1.0 0.22556 0.23529 0.24323 0.23802 
1.5 0.10062 0.10458 0.10812 0.10371 
2.0 0.04438 0.04494 0.04622 0.04443 
2.5 0.02108 0.02102 0.02149 0.02081 
3.0 0.01092 0.01084 0.01102 0.01075 
3.5 0.00613 0.00608 0.00616 0.00604 
4.0 0.00367 0.00365 0.00368 0.00363 
4.5 0.00232 0.00231 0.00233 0.00230 
5.0 0.00154 0.00153 0.00154 0.00153 

f ( x )  = X 3,~ = 0.5, f l =  0.1 
0.0 0.71639 0.64867 0.66660 0.66841 
0.5 1.06344 0.95620 0.98518 0.99057 
1.0 3.29662 3.24280 3.36620 3.33560 
1.5 0.61345 0.63318 0.66654 0.61846 
2.0 0.11607 0.11616 0.12007 0.11480 
2.5 0.03765 0.03753 0.03855 0.03727 
3.0 0.01614 0.01602 0.01642 0.01594 
3.5 0.00813 0.00805 0.00820 0.00802 
4.0 0.00453 0.00451 0.00456 0.00450 
4.5 0.00273 0.00273 0.00275 0.00272 
5.0 0.00175 0.00175 0.00177 0.00175 
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spectral density for the Duffing oscillator for the two cases: ~ = 2 and/3 = 1 
(overdamped) and ~ = 0.5 and/3 = 0.1 (underdamped). The second column 
shows the "exac t "  result obtained by Morton and Corrsin (7~ using the second 
Kraichnan-Wyld approximation (KWII).  The third column gives statistical 
linearization results, the fourth gives the results of  the quasilinear Green's 
function method, and the last column represents the simple modification of 
statistical linearization discussed above. The most reasonable way to compare 
these results over the range of co is to examine the mean square deviation D 
for the 11 values of  co for which exact values of  Sxx(co) are available: 

D --- [Sx~(co,) - ~,~x~e~a~ (42) 

We find for the case c~ = 2,/3 --- 1, 

D(SL0) = 2.02 x 10 -5 

D(SL1) = 1.37 x 1 0 - '  (43) 

D(modified SL0) = 3.36 x 10 -5 

The modified SL0 is by this criterion 4.1 times better than SL1 and 6.0 times 
better than SL0. For a = 0.5,/3 = 0.1 we find 

D(SL0) = 1.76 x 10 -3 

D(SL1) = 1.48 x 10 -a (44) 

D(modified SL0) = 8.33 x 10 -4 

Here the modified SL0 is an improvement by a factor of  1.8 over SL1 and by 
a factor of 2.1 over SL0. In both cases, the modified statistical linearization 
gave better agreement with the exact results, as judged by the mean square 
deviation, than the quasilinear Green's function method (SL1). 

5. C O N C L U S I O N S  

1. Statistical linearization is a simple and effective method to obtain 
good approximate results for autocorrelation functions and spectral densities 
for nonlinear systems described by Eq. (1). This conclusion holds for relatively 
large ranges of  damping (r and nonlinearity (/3) coefficients and for a variety 
of  nonlinearities f(x). 

2. The cumulant discard method, Eq. (30), invariably yielded results 
which were worse than statistical linearization. 

3. The quasilinear Green's function method, Eq. (25), consistently gave 
results which were more accurate than those of statistical linearization. The 
computational effort involved in solving Eq. (25) is, however, very large and 
probably not worthwhile for the small gain in accuracy obtained. 
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4. The method which seems to give the best results, i.e., the best approxi- 
mations to the known exact results, is the modified statistical linearization 
method in which the formal results of statistical linearization are used, but 
with an effective frequency determined by the exact variance as calculated 
from the Fokker-Planck equation. This method has the very important 
advantage of great computational simplicity as compared to all other attempts 
to improve the results of statistical linearization. 
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